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ON SOME POSSIBILITIES OF CREATION OF
HYPERSONIC FLOWS IN WIND TUNNELS

A. A. NIKOLSKY
Academy of Sciences, U.S.S.R.

PART |

HYPERSONIC NOZZLES WITH NONUNIFORM POTENTIAL
FLOW IN TEST SECTION

Analogy between hypersonic steady gas motions and unsteady gas motions
in a space of small dimensions is established in various papers.'—* All conclusions
are directed to the investigation of a case of the hypersonic flow about slender
bodies; the transformation of motion equations and boundary conditions are
carried out together. The analysis includes typical, specific flow values, and a
Mach number of the undisturbed flow and thickness ratio of a body. It is not
clearly formulated in these considerations that not only in the hypersonic flow
about bodies but generally in any steady hypersonic flows—particularly in
hypersonic flows in ducts—there is an approximate analogy with unsteady flows
of smaller dimensions where everywhere in the flow region the direction of the
velocity vector differs but slightly from some fixed direction.

In the present paper a demonstration of the above-mentioned analogy is
given which indicates that this analogy is rather accurate even in flows with
local Mach number = 3.

The application of this analogy permits the use of some unsteady motions
for the approximate creation of original hypersonic flows in nozzles. In case of
two-dimensional irrotational hypersonic flows, the given analogy with unsteady
motions exists in the general case even if the velocity vector inclination angle
varies greatly in the flow region. The conclusion of this analogy is given herein.

The equation system of the steady adiabatic gas motion has the form

du du du _ _1lap
“ax+”ay+waz_ p Oz (1)
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where u, v, w are components of the velocity vector along axes z, y, z, p = pres-
sure, p = density, x = specific heat ratio of gas. Equations (1)—(4) show that the
enthalpy 1, is constant along with stream lines.

2 40t 4wt x _p i
10 = 5 + oy S Const. (6)

Consider the motions when 7, is constant in the whole flow region. Then if the
motion is hypersonic, the value V = v/u? + v? + w? of the velocity vector
modulus in the whole flow region nears its maximum value, then maximum
velocity Viax = v/ 21,. Transform Eq. (5) to the form

aln (pV) dcosa  dcosfB | dcosy
ac t % T ay " -

0 (7)

where a, p, v are angles between the velocity vector and z, y, z axes, and 9/d¢ =
cos a(d/dx) + cos 8(d/dy) + cos ¥(d/dz) is the derivative along the stream line.
As it is seen from Eq. (4) 8 = p/p(1/x) is constant value along the streamlines.
Using this fact and Eq. (6) we shall have that along the streamlines the differen-
tial equality

dlnV
dlnp V2 M? 8)

is valid where M is local Mach number. Using this relation, represent the first
term of the left-hand side of Eq. (7) in the form

d 1 d
a—rln(p1’)=(l— ﬁﬁ)é}lnp 9)

At high M numbers the value M—? is small in comparison with a unit. Even at
not very high M = 3 it is 9 times less than a unit, i.e., by the order is less than a
unit.
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Omitting the value as compared to a unit, write Eq. (7) in the form, typical
for arbitrary hypersonic motions:

dlnp  Odcosa ,  dcosP | dcosy _
ac T T ay + dz =0 (10)

Equations (1)-(3) may be presented in the form

dlnV  dcosa 1 dp

cos & = + %~ oVor (11)
dlnV acosB___la_p

0s 8 —o¢ + o~ avtay (12)
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cos vy ac + x oV 3z (13)

Using the relation [Eq. (8)] write the equations in the form

N - dlnp  dcosa _ 1 dp
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Changing the derivative of the density from Eq. (10) we have
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At high M numbers the first terms of the left-hand side of these equations
disappear and the equations are presented in the form

d cos a d cos a dcosa 1 adp

cos a — + cos 8 ay + cos v o V? oz a7
adcosp d cos B acosB__ 1 ap

cos & — — + cos B ——-ay + cos ¥ oz T aViay (18)
d cos vy d cos ¥y dcosy 1 dp

cos a@ —— + cos 8 —ay + cos vy ~% & V7 0z (19)

SOME PARTICULAR CASES

(a) The angle « is small, i.e., the direction of the velocity vector everywhere
in the flow region nears the direction of x = axis.

Supposing that cos « = 1 in Egs. (18), (19), (10), and (4) we shall have the
system of equations

W, oW, aw__lap
T gy TV~ ey (0}
dw w ow __1dp
Tl gy T~ " e (21)
dp , Apw) | d(ew) _

e 3y +=c =0 (22)

9 ﬂ) ,_6(3) ﬁ(ﬂ)_

Bt(px +t6y px +w62 px - (23)

where t = 2/Vmax, © = €05 BV max, W = €08 ¥V max. The system of Eqs. (20)-(23)
fully coincides with the system of two-dimensional unsteady adiabatic motions
of gas.

(b) The motion is two-dimensional, parallel, does not depend upon coordinate
z, and potential. The range of the variation of the angles of the velocity vector
inclination is not limited.

In the case being considered, Eq. (10) is presented in the form

dlnp . 9« da _
ax sin & o + cos « ay 0 (24)
It may also be presented as
dlnp  da _
at an =0 @)

where derivative with respect to o means differentiation along the normal te
the streamline.
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The equation of the irrotational flow has the form

d(Vcosa)  9(V sina) _

ay dr a
It may also be presented as
av’ da
o V o 0 (26)
where
V= Vmax -V

The Bernoulli-Sen-Vhenah Eq. (6) and the isentropic condition give for the
whole flow region differential equation

Vav' = %dp @27)

by means of which present Eq. (26) in the form

da 10
20 _ 10p
|} ot oo (28)

In Eqgs. (25) and (28) change differentiation with respect to ¢ and n for differen-
tiation with respect to potential ¢ and stream functions ¢ for differential relations

V V-
do = ;—df;  d¥ = —pdn (29)

The resultant equations system is

aall'l p + & a(a};:nx) = 0

¢ (30)
V' d(aVaw) _ _ dp
Viax? 9 T

Supposing in the coefficient of the left-hand side of Eq. (30) V' = Fpax and
introducing notation

W = aVuu (31)

present the system of Eqs. (30) in the form

dlnp oW _ oW _

_9p
30 P 3y (32)

de 1'%

The equations of the one-dimensional unsteady isentropic gas motion along
the axis £ at a speed of W (z,f) have the form
dlnp oW
dt + a

dw _ _1dp @3)

0,  ar o 3
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Replacing ¢ with Lagrange coordinate m according to the formula

£
m = [ p(&it) dt (34)
£

o ()

where £y(f) is value of £ for arbitrary fixed particle. Then the system [Eq. (33))
will be transformed into the system

oo oW _. W _ _p ;
at +p6m_0' N (35)

The system of Eqgs. (32) coincides with the system [Eq. (85)] if ¢ is replaced
with ¢ and ¢ with m.

We have considered steady flows when V.. is constant in the whole flow.
If it varies from one stream to another, then using the condition of its constancy
along the streamlines dV,../dt = 0, transform the system of the Eqgs. (1)-
(6) into the form

ow , ow o ow _ _ 1dp
e 6y+w' 9z p oz
o o, o _ _ 1dp
Grge Thig THhg =— %
ow, ow, ow, _ _19p
”‘ax+”‘ay+w'az“ 0z
(36)
a a ad
() () e () -
ar \ p* ¥y \p" 9z \ p1
9 (pru1) 9 (p101) a (paw:) _
dx + ay + a9z =9
ul2 + vlz + 'w'l2 + X P - Vmax;2 =
2 x —1 py 2 =
where
w
u|=VoVu, Ul=V[)FU“, w1=VoV
Vo 2

P = po W; Vn\ux.2 e V02 = Const.

Vo is a constant which has the velocity dimension. In the obtained equivalent
flow the value of the maximum velocity is constant everywhere. Present
entropic funection of the equivalent flow in the form

._2 7 _Bm - _p - P — z 1—z
pux ¥ (po/70,) X T/ Ts,) * = (peTo/Ts,) = el .
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where T is the initial flow stagnation temperature which is varied from one
line stream to another, Ty, = 1,,/J ., is the equivalent flow stagnation tempera-
ture, which is constant everywhere, and p, is the initial flow stagnation pressure.

Thus the equivalent flow is isentropic if the initial flow stagnation pressure
is constant everywhere. In this case this equivalent flow is irrotational because
its entropy and enthalpy are constant. The given consideration allows to use the
above-mentioned cases (a) and (b) in the equivalent flow.

In this case bear in mind that if the initial flow is hypersonic then the equiv-
alent flow is also hypersonic because the distribution of the local M numbers in
these two flows coincides.

Equations (1)-(5) permit exact solution where p=0, p # 0, V' is finite. It
ensues from Eqs. (1)-(3) that dV'/dt = 0, where V' is the velocity vector. This
shows that all stream lines are straight and that the velocity value on each stream
is constant. Local M numbers are equal to infinity. There is no interaction be-
tween the particles, and they expand by inertia. It is of interest to consider such
flows.

Proceeding from more complicated premises, the author of Ref. 5 has come to
such a kind of flows. The unsteady analogy of case (a) gives unsteady expansion
by inertia in the space of smaller numbers of dimensions.

The analogy of case (a) allows the creation of steady hypersonic flows in the
nozzles and diffusers of the particular kind derived from exact solutions of un-
steady equation of the gas dynamics with the control symmetry, corresponding
to some motions of gas, for which the velocity distribution in each moment of
time linearity depends on the distance from the symmetry center. The solutions
are obtained by L. 1. Sedov, who gives them in the form of Ref. 6.

dom ‘
o8 = B Mm? [A + Baro—v]uz (37)
g{ =¥= = % ti?tn r==+=M V A + Banrx—D p (38)
p = M (ram)’ P’ [(T“‘m)'ﬂl (39)
= ’;]T['v {C + (I;l)‘ BP [(J‘ST()""?]} (40)
. 2(s + 2)

Where r is the distance from the center of the symmetry, A, B, ¢, s are arbitrary
constants. P is the arbitrary function of the argument.

Value s = 1 for two-dimensional symmetry, s = 2 for cylindrical symmetry,
s = 3 for spherical symmetry.

Show that among solutions expressed by Eqs. (37)-(40) there are isentropic
ones, which are of great interest for our purposes. These solutions do not con-
tain arbitrary function and are determined by the system of the equations

a’ = ty’ .4

0
€1 + (2£2H(2+H

(41)
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(2 Y ro —2k/(2+ +
v = 2 + k t02 R‘E (él < 313 ) (43)
_ T 224k
R = " (44)
In this case k = v(x — 1), ry, t, are arbitrary constants with dimensions of

length and time, e, e, €; may assume meaning + 1 and — 1 independently of
each other. In each combination of parameters and signs this solution is suit-

able only if the right-hand sides of Eqs. (41)-(48) are positive.
The differential equations of two families of characteristics

dr
a=v:ba

are integrated. With ¢, = + 1 the characteristics equations are

TSy o o Y i)

= Hz = Const.
1—-vV 14 e £2kI24K)
~1 — 2K/ (2HK)
GV BT e T AEN LA | o Bonsk
1+ V1 o+ B2
The characteristic equations with ¢, = — 1 have the form
arcsin B — L_ arccos £ /" = N, = Const.

v

1 — (k) (24K
arccos R + —— arccos ¢ */** = N, = Const.
v

(45)

(46)

(47)

(48)

(49)

Turning to the equivalent hypersonic flow in accordance with the case (a),
x = x/ry assume that { = /Viax, 70/to = Viaxs € = 7/70, Vomax 1s the constant

value of the maximum velocity.
Equations (41)—(44) have the form
dt’

il = ———
& + EZEEI:.'(HH

2 _x—1 I_c( 2 )2 2 —2k/(24k)
a = 2 2+k Vmax(R +53)£

(3]

— —2k/ (24K
R=TE [(24k)

(50)

(1)

(52)

-
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Equations (46)—(49) of the characteristics will be of the same kind. For the
local Mach numbers of the flow we have the equations

_Vmaxz_ 1 1
x —1k

2k/(2+k)
£

R + &

@ + k) (54)

If s = 4+ 1 then Mach number M, on the symmetry axis (with R = 0) will be

M, = 2+ k gD
vV (x — Dk

The distribution of Mach number along R with £ fixed will be

M 1
M, R*41

With R = 1 the Mach number is twice less than on the axis. The creation of
such flows with the nonuniform Mach number along the section may allow to
obtain higher Mach numbers near the symmetry axis with not very high Mach
numbers along the section. If ¢ = — 1 and ¢, = + 1 then the flow exists only
at R>1, R=1,a=0,M = . In the zone of R < 1, @ = 0 there is a high
vacuum. The relation [Eq. (53)] with R fixed is an equation of stream lines. Any
of them may be chosen as a hard wall and one can consider the flow in the region
of smaller values of R.

In this case the values £ and x are related by Eq. (50). Thus quite identical
distributions of Mach numbers along R, determining the relation [Eq. (54)] are
obtained at quite different stream lines.

The relation [Eq. (52)] may be presented in the form

2

=g R BT Vatapien (55)

a

where @ = v/V .x approximate value of the velocity vector inclination angle to
the X axis. At ¢y = &2 = 1 and R = Const. { — o the value a tends to 2/(2+kR)

When increasing the motion transforms into the motion with straight stream
lines, which are trajectories of the gas particles motion by inertia. In this case
Eqs. (46) and (47) of the characteristics give when £ — oo quite definite values of
R, which is in complete agreement with Ref. 5 results as to possibility of the
infinite influence regions for bounded domains in hypersonic flows. It is interest-
ing that density distribution across the flow remains uniform.

Ate, = 1, = 0, &2 = —1 when £ = &, corresponding to the value of § = 1.
We have hypersonic nozzle with constant decrease of the stream lines inclina-
tion to the X axis up to zero.
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The neighborhood of the point, corresponding to values, £ = #,, R = 0, under
some conditions may be used as the *‘test section’ of the hypersonic wind tunnel.
The flow can be reflected symmetrically to the plane £ = £, and then down
stream from this section there will be a hypersonic diffuser.

One can try first to boost the flow in the usual conical nozzle and then boost
it under conditions of transforming the flow into the flow considered above.

To find the nozzle contours, which give such a transition, it is necessary to
solve, for example, using the characteristics method, a problem of the Goursat
type problem of determination of the flow according to data on two characteris-
tics, resulting from a point on the symmetry axis. In this case the characteristics
equations found above can be of use.
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PART II*
WAVE STARTING OF THE SUPERSONIC AND HYPERSONIC DIFFUSER

In the usual starting of the supersonic wind tunnel with fixed supersonic
diffuser the shock wave is moved from the critical nozzle area in the direction
of the test section when the ratio of the stilling chamber pressure to the pressure
in the end of the subsonic part of the diffuser is increased and maximum total
pressure losses in the shock determine the ranges of possible supersonic diffuser
throat area. If the gas friction at the walls is not considered, then the maximum
regime is determined by the relation

F*G‘/F*C - I/Vm: (-.)b)

where Fx, = critical throat area of the diffuser, F«. = critical nozzle area, and
¥ae = Po’/po is the ratio of total pressure (the pressure of the adiabatic stagna-
tion) after the normal shock, according to calculated Mach number in the work-
ing section, to total pressure pq before it. In this case the condition of creation of
the supersonic regime in the wind-tunnel operation section can be written in
the form

FoofF e >~ 57)

Vne

If this condition is not held, then at some value of the ratio € = pr/p: (the
pressure pr in the stilling chamber to the pressure p; in the end of the subsonic
part of the diffuser) in the diffuser throat, the velocity equal to local sound speed
is established, the diffuser is ““‘choked,” and the shock is fixed in a certain section
of the nozzle, without reaching the working section. The sppersonic flow in the
working section cannot be created by any further increase in the ratio of ¢ =
P/ px-

If this condition [Eq. (57)] is held, then at e = pr/p;r = 1/v,. the shock sud-
denly moves down stream through the diffuser throat up to the section, where the
Mach number of the supersonic stream is equal to the Mach number in the
working section. In fact, due to the boundary layer on the walls of the nozzle
and diffuser and its interaction between shocks, the above-described phenomena
occur, but in different limits of parameter values. After the shock has moved
through the diffuser throat and the supersonic flow is formed in and in front of
it, the supersonic flow is decelerated more in the converging part of the diffuser
by decreasing the diffuser throat almost up to the flow breakdown. Then the
value ¢ is decreased almost up to the limiting value, corresponding to the sudden
shock-wave movement to the nozzle, which is accompanied with the supersonic
flow breakdown in the working section.

In the supersonic and hypersonic wind tunnels with circular working sections
and especially with short running time, the adjustment of the diffuser at starting
to obtain the optimal operation regime is associated with great construction
difficulties in geometry and decrease in the wind tunnel running time. This is

* With A. Y. Lashkov.
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why methods of starting the fixed supersonic diffuser to obtain optimal operation
regime without any adjustment are of obvious interest. One of such starting
methods—rejection of the part of flow at the diffuser inlet—was proposed by
Eggink in 1953.!

The method of supersonic diffuser starting in which pecularities of the un-
steady flow are used is outlined in the present paper.

The same steady-gas flows can be “‘constructed” in time and space by different
ways depending on their formation “history.” The usual method of optimal
supersonic diffuser starting previously described can be used to ““construct” the
supersonic flow in the diffuser. The method is reduced to the successive change
of steady flows with normal shocks in the nozzle working section and diffuser
system.

The present paper is based on the following principle of construction of steady
supersonic flow in the nozzle working section and diffuser system. The super-
sonic flow is formed by means of some unsteady gas dynamic wave process which
is not due to the change of the steady motions; this accounts for the fact that it
is quite free of the geometric restrictions, expressed by relations of the type
[Eq. (57)] which are the steady flow properties. This unsteady motion in the
ideal case can be considered as follows.

Let a diaphragm be set in the nozzle critical area. Then from one side of it—
in the stilling chamber and subsonic part of the nozzle—Ilet the gas be at rest
with some values of the pressure and density. From its other side—the supersonie
nozzle, working section, supersonic and subsonic diffusers—is the vacuum. Let
the diaphragm disappear at some initial moment of time r = 0.

Then at 7 > 0 there will appear an unsteady wave motion in the gas, coter-
minal to the vacuum; with this motion the expanding gas will tend to become a
vacuum with supersonic speeds. First through the nozzle, working section and
diffuser unsteady supersonic gas will pass, then this unsteady motion will be
transformed quickly but continuously into the calculated steady supersonic
flow. If the nozzle is hypersonic, then the volume of the exhaust gas will expand
with time region of steady flow coterminal to the vacuum through the thin layer
of the wave motion (Rhiman expansion-wave type). For steady hypersonic
flows, if the angles of the velocity vector inclination to a certain fixed direction
are small, the hypersonic similitude law is valid. That is why at the gas expan-
sion into the nozzle diffuser system, designed for obtaining hypersonic speeds,
the fixed-plane gas elements, normal to the wind-tunnel axis, will move and
deform independently of each other, while their axis velocity is hypersonic.
From the point of view of the application of the hypersonic similitude law even
Mach numbers M = 2. 5-3 for air are hypersonic.

This consideration shows that in hypersonic wind tunnels it is always possible,
using the recommended method, to start the fixed diffuser, decreasing any
hypersonic Mach number to M = 3. Practically, it is apparent, that at sufficiently
high Reynolds numbers and reasonable geometry it is possible to start the
hypersonic diffuser, decreasing the Mach numbers almost up to M =1 and
thus limitations in the hypersonic diffuser efficiency pertain not to its starting,
but to the possible existence in it of the steady supersonie flow of viscous gas.
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Evidently the process will approximate the described one if at the initial
moment r = 0 in the supersonic nozzle-working section-diffuser system the
vacuum is not high and there is a gas with a small ratio of pressure and density
to their values for the high-pressure gas, which is on the other side of the nozzle
critical area.

EXPERIMENTAL INSTALLATION

A model of intermittently operating supersonic wind tunnel was used as an
experimental installation; its general view and schematic diagram are given in
Figs. 1 and 2.

The aerodynamic contour of the tunnel model is quite simple, the straight
supersonic nozzle having the expansion angle of 7°20’; the initial nozzle area
(in which the diaphragm installed) being 5 X 30 mm and the working section
area F, = 19.30 X 30 mm.

The Mach number calculated for air by the formulas of gas dynamics at the
nozzle exit corresponded to the value of M = 2.905.

The supersonic diffusers Nos. 1, 2, 3 were changeable and had the following
nozzle throat-to-maximum area ratios respectively: h = 0.57, h = 0.415, and
k = 0.31. The expansion angle of the diffuser supersonic part for variants of
diffusers Nos. 1 and 3 was the same and equal to 6 = 16°, and for the diffuser
No. 2, 0 = 17°. Expansion angle of the subsonic diffuser in all variants was equal

Fig. 1. (1) Stilling section; (2) start sensor; (3) diaphragm section; (4) working section;
(5) diffuser.

Fig. 2. (1) Diaphragm; (2) reference vacuum meter; (3) damper (vacuum).
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to @ = 18° The operating process of the installation (Figs. 1 and 2) with time
was the following:

1. pumping out the damper by PBH-20 vacuum pump till the designed
pressure, which was measured by the BT-2 device or reference vacuum-
meter

2. opening of the bottle valve and gradual increase of the initial pressure in
the stilling chamber

3. diaphragm break

4. starting of the time delay system, set beforehand for a definite period of =
usec by a piezosenser

5. after r psec, firing of spark device and taking pictures of flow using the
[AS-451 shadow device.

To check the proper record of the test time, the delay of 7 usec and the flash
moment are fixed on the oscillograph.

The knife edge of the shadow device during all the tests was in the vertical
position (longitudinal gradient).

At a pressure of 6 kg/cm? one cellophane diaphragm 8 = 0.04 mm wide was
used. At a pressure about 15 kg/em? two cellophane diaphragms § = 0.04 m
wide each were used, and at a pressure of 60 kg/cm? one brass diaphragm

= 0.03 mm wide was used.

The spark filming duration before the tests was checked by C®P-2M device
and did not practically exceed 1 psec. Air was used as working gas in the first
group of tests, then nitrogen was used, since the air humidity caused condensa-
tion shocks in the diffuser throat distorting the flow.

TEST RESULTS

The performed tests were in the main of qualitative character, since the princi-
pal aim was to confirm experimentally the general theoretical considerations
about the possibility of “‘starting™ optimal supersonic diffusers, using the method
proposed in this paper. The problem determined the methods for performing
the test.

A picture of the gas flow was obtained in the nozzle and diffuser of straight
aerodynamic contours.

During creation of the supersonic flow, one may expect that it is easily formed
in a more perfect aerodynamic contour of the channel.

As it was stated above, three diffusers were used during the test. Diffuser
No. 1 had a relative throat area of k = 0.57.

For Mach number in working section equal to M = 2.905 by the theoretical
hydraulic formula? and according to Hermann experimental data? the minimum
relative area of the supersonic diffuser throat at which the latter is started in
a usual way, h = 0.72.

The spark photographs (Figs. 3-5) show the sequential development of the
flow at starting of the intermittent supersonic diffuser No. 1.
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As may be seen on the photographs, this diffuser with the throat area consider-
ably decreased was started and continuously operated practically during the
calculated period of the installation operation.

Figure 3 fixes the flow picture in 7 = 250 usec after the diaphragm breakage
at a pressure in the damper of pp = 0.0003 kg/cm? and pressure in stilling
chamber of pr = 16 kg/cm>.

In this case the products of the cellophane diaphragm are seen breaking in
supersonic nozzle exit. At this moment supersonic flow and oblique shocks
appeared in the diffuser.

The spark photographs of Figs. 4 and 5 show the flow spectrums in 3500
and 10000 psec respectively, after the diaphragm opening at the same values
of pi and pr. The flows represented in these two photographs are uniform and
identical. The flows of Fig. 3 greatly differ from those of Figs. 4 and 5. The
much greater inclination angle of oblique shocks, to the diffuser walls in Fig. 3
than in Figs. 4 and 5, shows that with r = 250 usec the flow of gas at the end of
the nozzle and in the diffuser is still unsteady and Mach number is much higher
than the calculated one. The inclination angle of the oblique shocks at the
diffuser inlet in Figs. 4 and 5 rises up to v = 30° and this corresponds approxi-
mately to the calculated regime of the flow M, = 2.9. The coincidence of the
flows in Figs. 4 and 5 shows that they correspond to the steady motion of the
gas in the nozzle and diffuser.

The experiments with diffuser 1 were repeated under gradual increase of
pressure px in the damper.

There was steady flow after the unsteady starting in the experiment with
pr = 15 kg/em? and p, = 0.125 kg/em?, and this corresponds to the range of
the ratio pr/pr > 120.

Fig. 3. h = 0.72; 1 = 250 pusec.

Fig. 4. h = 0.72; r = 3,500 usec.

Fig. 5. h = 0.72; r = 10,000 psec.
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Diffuser 2 was half shorter than diffuser 1, and the former had the relative
area of the throat, k = 0.415 equal to the optimum one, received in the paper?
for the diffuser with the adjustable walls with M = 2.9. The spectrum spark
photograph of the flow in diffuser 2 after the starting at the beginning of the
steady stage, is given in Fig. 6. The stability of the steady flow in the diffuser 2
within the precision of the experiment was exactly the same as in diffuser 1.

Diffuser 3 had the relative area h = 0.31 similar to the value h = 0.28 for
isentropic flow with M, = 2.9.

The diffuser was started (Fig. 7) and this you can see on the spark photo-
graph taken in r = 400 psec after opening of the diaphragm with pr = 50 atm
and p, = 0.0003 atm.

The inclination of oblique shocks at the diffuser inlet corresponds to the
calculated regime of the flow M, = 2.9.

However, in 180 usec the supersonic flow in the diffuser was broken down and
in 3800 usec became typical of the choking regime of the supersonic diffuser
(Fig. 9).

Thus, by means of the unsteady flow regime the supersonic diffuser can be
started even with the throat area nearly equal to the supersonic nozzle critical
area, but the duration of work of such a diffuser will be very short, as it is im-
possible to have a steady flow in such a diffuser. Probably the flow is broken
down because of rapid increase of the boundary layer which interacts with
oblique shocks.

The spark photographs of Figs. 10-14 are taken approximately in r = 250
usec after the break of the cellophane diaphragm of § = 0.04 mm thickness,
placed in the throat of the supersonic nozzle.

The flow spectrum at the moment of the optimum supersonic diffuser starting
at pr = 17.6 atm, P, = 0.0526 atm, pr = 18 atm, p, = 0.0856 is given in
Figs. 10-11. The spectrum of the development of this low with time — in 800
wsec is given on Fig. 1la.

Figures 12-14 illustrate change in character of a number of unsteady flows in
case of successive increase in Py; P, = 0.0985 atm, P, = 0.207 atm, P, = 0.446
atm.
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Fig. 8. h = 0.81; 7 = 480 usec.

Fig. 9. h = 0.81; 7 = 3,800 pusec.

Fig. 12. |k = 0.415; 7 = 250 psec; Py = 18 at; pr = 0.0985 af.

Fig. 18. h = 0.415; r = 250 psec; Py = 18 af; pr = 0.207 at.
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The specter of flow, shown in Fig. 14, does not differ practically from that
obtained when photographing the unsteady expansion into atmosphere under
the same conditions (Fig. 15).

By increasing the pressure in the damper, P;, at pr = Const., sufficient for
maintaining the steady flow in the hypersonic diffuser, we change for a quite
definite kind of unsteady flow, at which the hypersonic diffuser cannot be
started.

The process development of this unsteady flow in the fixed nozzle-operating
part-diffuser system, is shown in Fig. 15a through f.

The flash photographs are taken at pr = 16 atm, P, = 1 atm starting with
7 = 100 usec after the cellophane diaphragm is broken § = 0.04 mm in succession
after every 50-100 sec.

The physical picture of development of this kind of unsteady flow is charac-
terized by the presence of a zone of vividly expressed turbulent flow structure—
contact discontinuity type, moving after a comparatively uniform region,
which follows the shock wave, after the diaphragm is broken.

Formation of cross waves and their interaction with the incident shock wave
is clearly seen in the photos. The turbulent region of the flow gradually filling
(r = 100:350 psec) the whole visible flow region is characterized by a high-
density gradient in the longitudinal and lateral directions. It is clearly seen on
Fig. 15, where the flow spectra is photographed after r = 400 usec, with the
Foucault knife edge fully removed.

As is seen from the above, the flow in the turbulent region is subsonic. The
hypersonic region, which formed after the nozzle critical area in 7 = 400 usec
is bounded by a system of oblique shocks (m), which is followed by the flow
separation; the stream, formed in the center, still keeps the hypersonic speed,
but at a certain distance is ended in a normal shock, n. Next the unsteady pulsat-
ing subsonic flow enters the hypersonic diffuser, where it accelerates up to the
sound speed in the diffuser throat, and becomes more uniform under negative
pressure-gradient influence.

The hypersonic flow region, which formed after the hypersonic diffuser throat,
is practically free from turbulent pulsations.

The idea of the supersonie diffuser starting under the conditions of preliminary
pumping out of gas between the nozzle critical area and the diffuser critical
area was checked. The supersonic nozzle, calculated by the gas hydraulic for-
mulas has a Mach number M = 4.5 for x = 1.4, the relative area of the hyper-
sonic diffuser being k = 0.2.

After the supersonic diffuser two cellophane diaphragms 6 = 0.04 m wide
were installed. The working section of the nozzle up to the throat area and
supersonic diffuser were previously pumped out with a vacuum pump up to a
pressure of P, = 0.0001 atm, Figs. 16, 16a; P, = 0.001 atm. Fig. 16b; P, = 0.16
atm, Fig. 16¢.

Pressure of Py = 60 atm in the stilling chamber was maintained constant.
After the diaphragm was broken expansion into the damper took place; the
damper pressure was equal to atmospheric.
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Fig. 14. h = 0415; 7 = 250 psec; Py = 18 af: Pr = 0.446 af.

Fig. 15a. h = 0.415; r = 100 usec; Py = 16 at; Pe = 1 al.

Fig. 15c. h = 0.415; Py = 16 af; pr = 1 at.

Fig. 15e. h = 0.415; Py = 16 af; pr = 1 at.

Fig. 15f. k = 0415; Py = 16 af; px = 1 at.
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The flow process with P, = Const. was photographed in + = 300 psec since
the moment of the diaphragm opening installed in the nozzle throat area, with
the flash light used, Foucault knife edge was installed in vertical position
(longitudinal density gradient).

Besides, using the device comprising the pulsing flash source, Teppler type,
and photoregister with a linear speed of film equal to 0, 11 mm/psec the diffuser
development flow in time was photographed.

Flash photographs (Figs. 16 and 16a) illustrate the flow spectra in 100 and 300
usec correspondingly, after the diaphragm breakage at pr = 60 atm and P, =
0.0001 atm, showing the starting of hypersonic diffuser at M = 4.5. The flow
illustrated in Fig. 16 differs from that in Fig. 16a by the great inclination of
oblique shocks to the diffuser walls which indicates the unsteady character of
the flow at + = 100 gsec. Mach number in this case is considerably greater than
the calculated one.

An increase in pressure P; to 0.16 atm (r = 300 usec since the moment of
the diaphragm breaking) considerably changes the flow character.

The flow regime fixed in the photograph of Fig. 16b is typical of the case of
chocking. The similar flows are given in Figs. 14 and 15d. The film shot at
Py = 60 atm and P, = 0.00001 atm is an addition to the flows illustrated in
Figs. 16a and 16b. The quasi-stationary flow duration in the hypersonic diffuser
after the start was determined by the film and did not exceed 1,300 psec. This
period of time approximately corresponds to the calculated period determined
by the losses in the flow of mechanical energy, in the device for the given case.

Starting of the supersonic diffuser under the conditions of pumping out of
the nozzle and diffuser working section may be put into practice where great
vacuum capacities are not available.

Fig. 16a. h = 0.2; 1 = 300 psec; Py = 60 at; px = 0.001 at.

Fig. 16b. h = 0.2; Py = 60 af; pr = 0.16 af.
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